BUILDING SECURITY IN

— -l
- SOFTWARE |
nnnnnnnnnn

Training & Software
Security Engineering: CWE

Knowing what could make
software vulnerable to attack

Robert A. Martin

CWE 28 February 2011 MITRE

Today Everything’s Connected

Your System is

attackable...
T 'fjf

.31" :E:‘.-- L.-';-_-_-_I: .ll -\'1.

,:l "*"“ ;I .-*.
a3 .

% el w AR

¢ v B et L gy

e % = f“ﬁ'**.:.v:«.?ﬁ‘ ¥k y

'.‘-) ol _'-' ..?'.._ \ '.'_'l- Y = i
v g (e w'/'u:f

: 'ffr,_r,-vﬁ- 7 .:-

‘r)-u;fr '+ ,a': v

[(i u

& When this Other System gets subverted
through an un-patched vulnerability, a
mis-configuration, or an application
weakness...

The Software Supply Chain

Reuse /\/ Software "
?

Programs

Program
Office

?

Outsource s
Prime)

Contractor

. Develop
Acquire
q In-house
Foreign
w Location
Software

Foreign
Developers

Develop Outsource

2 In-house
? L ?
?
“Scope of Supplier Expansion and Foreign Involvement " graphic in DACS www.softwaretechnews.com _ Secure Software

Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis o f May 2004
GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks”

If the weaknesses
In software were as
easy to spot and
their impact as
obvious as...

CVE 1999 to 2011

— 7/
—/

45000 ~

| /. ® .
40000 ° s .\V
: /e

35000 A
30000 -
25000 A
20000 +
15000 A
10000 +

5000 A

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2007)

XSS
- buf

sql-inject
20.00% - ______,_.//\ dot

-~ php-include

25.00%

infoleak
15.00% - —— dos-malform
link
\ - format-string
10.00% - \.\ >\< crypt
priv
_ perm

| metachar
5.00% - H—-——\\ | | int-overflow
. y I
! S JI—’*\\M J —t ® —
| gt : | (F\ -
| _— — 4 — e
T ! ! ! 1 \) @

0.00%

2001 2002 2003 2004 2005 2006 2007 MITRE

Removing and Preventing the Vulnerabillities
Requires More Specific Definitions...CWEs

9

Improper Neutralization of Input During Web Page Ge neration ('Cross-site Scripting’) (79)
e Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) (80)

¢ Improper Neutralization of Script in an Error Messa ge Web Page (81)
« Improper Neutralization of Script in Attributes of IMG Tags in a Web Page (82)
e Improper Neutralization of Script in Attributes in a Web Page (83)
« Improper Neutralization of Encoded URI Schemesina Web Page (84)
¢ Doubled Character XSS Manipulations (85)
XSS e Improper Neutralization of Invalid Characters in Id entifiers in Web Pages (86)
1 4 e Improper Neutralization of Alternate XSS Syntax (87)
—= buf
Improper Restriction of Operations within the Bound s of a Memory Buffer (119)
Sql _inj ECt « Buffer Copy without Checking Size of Input (‘Classi ¢ Buffer Overflow’) (120)

dot 19
—— php-include
infoleak
—— dos-malform
link
format-string
crypt
priv
perm
metachar
int-overflow

¢ Write-what-where Condition (123)

¢ Out-of-bounds Read (125)

* Improper Handling of Length Parameter Inconsistency (130)
 Improper Validation of Array Index (129)

* Return of Pointer Value Outside of Expected Range (466)
« Access of Memory Location Before Start of Buffer (78 6)
e Access of Memory Location After End of Buffer (788)

« Buffer Access with Incorrect Length Value 805

« Untrusted Pointer Dereference (822)

» Use of Out-of-range Pointer Offset (823)

» Access of Uninitialized Pointer (824)

« Expired Pointer Dereference (825)

Path Traversal (22)
 Relative Path Traversal (23)
« Path Traversal: "../filedir' (24)
« Path Traversal: '/../filedir' (25)
R 8 more here -------------- >
 Path Traversal: '..../[' (34)
 Path Traversal: '.../.../I' (35)
« Absolute Path Traversal (36)
« Path Traversal: /absolute/pathname/here’ (37)
¢ Path Traversal: \absolute\pathname\here’ (38)
¢ Path Traversal: 'C:dirname’ (39)
« Path Traversal: \\UNC\share\name\' (Windows UNC Sh are) (40)

™

Exploitable Software Weaknesses (ak.a. Vulnerabilities)

Vulnerabilities can be the outcome of non-secure pr actices and/or
malicious intent of someone in the development/supp ort lifecycle.

The exploitation potential of a vulnerabillity is in dependent of the “intent”
behind how it was introduced.

D S
E O
P F
L T
O W
Y A
E R
D E
Intentional vulnerabilities are spyware & malicious logic deliberately imbedded (and might

not be considered defects but they can make use of the same weakness patterns as

unintentional mIStakeS) Note: Chart is not to scale — notional representation -- for disgssions

Common Weakness Enumeration (CWE)

e dictionary of weaknesses
- weaknesses that can lead to exploitable vulnerabili ties (i.e.
CVESs)
- the things we don’t want in our code, design, or ar chitecture
- web site with XML of content, sources of content,a nd process
used
e structured views
— provides multiple views into CWE dictionary content
— supports alternate views — developer/researcher/sub- views
e Open community process
— to facilitate common terms/

concepts/facts and Foundation for
understanding
— allows for vendors, developers, other

system owners and acquirers
to understand tool capabilities/
coverage and priorities

— utilize community expertise

Efforts

Security
Measurable™

©2011 MITRE

~ ...but sailing ships in the open ocean and

—~ building commerce and defense capabilities
™ '. ' based upon them requires
dlsds & W understanding...

(7))
i)
M
(D)
| —
i en
T 1]
c
@)
—
®
o
>
®
C
(-
@)

...surface maps didn’t
capture the full set of
threats and hazards — I.e.
what was really going on...

...a more insightful
depiction — one that
shows what was
going on under the
surface — was
needed...

| FPT " FTeITe SIS FRRT I RN AR R R PR FREAN
 EEEENER LN | apgd

"
=
=
-
=
-
] e P -
- == § % =
- L FPERTR . - -
L} . " = L] -
[s 4 g a =
i= -4 = - =
whw ww Eor = =
i (1] oW [}
& B Pom [
- i o -
- an - | 5 -
" ™ - | - sEmgma -
(] 0 o - SAEERERdE i
TN T = BhkmdE s m e e B B kR e b
negew = & sigbmifamrms . L
“ L 3 LR] L3 - =
TN ® " (1] " e
e adbE & e - & e
Baw - -a Ealg ge
- " - P R
e L L EALL T LY g
= sd =l L]
@ & wpfl i
= = rmeEa

tant.
hazards..

5
Ry

.._.m._._i-..T...--Hr-..-.- i .
III ..\- [| f .-‘nh.fll!.-.n.l.-.f i -
, 3%

..'“-..._- w | \

e
PRI T

) gl

-_-TII-II

por

i r n -
-Hlt-‘m _““ 1“-m- II"-' H-_
gl CLiE TN oy e
L R i e | e
Akt _M,_ % m D

R L R 1.1 A
® L o ﬁ e m -,
t 2 _ : _..”- .m.”h...C.“

= O RIRL (b IH®
R T e B i i
e E- O,
i P o
YRR & e
-. :.....m._"r_._,.ﬂ.._.:_.._..._r.“.._.”""“u..:.”H“.u.._,quu.u.__. A g .r_w}
Ly . L\ o m,_

. C- S
' DY O e

Kagee ™" “ -O
., -+.”m_u.,__ml . . Lo __Sm
0 @ NPT LT T 6D _
'y ok iagd S Sl [
S o T m i e ‘N)

...and warning signals
to help others avoid

known hazards were
erected along with... T

...Indicators
showing safe
ways to avoid
the known
hazards...

THE CERT C
SECURE CODING
. STANDARD

"rﬂ, Gaogle

» MECH0C, Compde claanly ol high warming levels

R |

MECO0CPP. Complle cleanly at high warmning levals
fei :;n% Ut it by dte i on O, 200 (e ching) GO COMMENT
Comalcodi uaing the highast warning vl vt o yur omatlerind ebinats wariinga By modhyny i cade,

Aecaring ta CO9 (LEQUIIE 0050 1900 Sactin §4.1.3

A confming mplemantation shal prodiece of ast one diagnoste message [dntled n an '"ﬁ?'iiﬂﬁm manner] f # praprocestig pransaton und or tranulaton und contans @ volation o any synta e o contrant, even i boav i k0
| eeplly ipsoted 8 ghEiOg) ¥ MRRBE SHs, Diaghails MeiLagE Ao 18 B prdeced 1 e rsumitiniel,

Aigureing & dankrmng mikmintiten, dnnaing digaail P ol dendds by TRl o cnitren! veten

Wiitane paurdi cat chacking Lock i valadl, vt them rigulerk

Exouptons

ECO0-EX 1 Compders can praduce dagnaatic messagas for comect code. Th i permitted By C94 (1501
Srlen eareedt 1 gl 13 aroid) Sommenl enalinag why Lhg wirang masLigE s a1y
ngerntands 1 imglcations of tha waming but hai good rassce to uee the fagged comitruct nyway.

. which ol & comoder o produce 4 deganstic or wny reasan. 1 i uniialy roferadle 1 rewrka cade to sdmiate compler gy, bt 1 he
Al Grovigd savh b IUEERI) mingl, o 1 Bulabl latted Sommenia o DR, wAIEh L8 B0 wiad 1INl WA Uhe Brigramner

Dt Wimply muiet Marninga by addng toe caits oF e malnd. Inatand, uadersiand the o e the wienng 85 Contder 3 betler B0, BUCH B LAng MALChin VD dnd Iaddng (e CL1 WhEnevE DIDR.

Risk Assessment

.l.....
- s
@ ...".;.!.‘:0
..-' -..._..:. p & &
PSSt Pl K e
".0-0-.:’.’ .%,...
o> @
sose, ¢ 'q::o-q"
ﬁ__._l.l. .. ._'.-...;'..
®e %o ® " oo« =|References
k-2 P o pu ...
- o L J
P e o
® o [Sutter 05] Item 1
b ROBERT C

(ISO/IEC 9899:1999] Section 5.1.1.3, "Diagnostics"
» [MITRE 07] CWE ID 563, "Unused Variable"; CWE ID 570, "Expression is Always False"; CWE ID 571, "Expression is Always True"

~| [Seacord 05a] Chapter 8, "Recommended Practices”

, ‘Eagrenion i Mlweyd Folie’; CHE 10 571, “Expremuion i Ao Trod’

...but new types of threats and hazards can
occur in unexpected places and in new ways
and...

...some
threats and

hazards are
unpredictable
and
dynamic...

..and so they

¢ also had to deal
with active and
Intelligent
threats...

...with defensive and
offensive security
capabillities.

i ._-.!r+

-}’@—;—'-—rr-_._"-'.-ﬂ.‘h:_," -_l"'_'--' B ':
Security
Feature

SQL Injection
(CWE-89)

Attack

(CWE-79)

Attack

CAPEC-86)

" (CAPEC-66)

Software [In]security: Cyber Warmongering and
Influence Peddling

B2e:

“For years in computer security, we have
been attempting to protect the broken stuff
from the bad people Dby placing a barrier
between the bad people and the broken
stuff. We have failed. Instead, we need to
fix the broken stuff so that attacking it
successfully takes far more resources and
skill than is currently the case.”

Making
Security
Measurable™

CWE - Common Weakness Enumeration

(2)= (@)) () (CEL rup/cwe.mive.ors/

f\
V k i MOST DANGEROUS
A Common Weakness Enumeration
A Community-Developed Dictionary of Software Weakness Tvpes SOFTWARE
ERRORS
m International in scope and free for public use, CWE™ provides a unified, measurable
Full Dictionary View set of software weaknesses that is enabling more effective discussion, description, « Updated Common Weakness
Develapment View selection, and use of software security tools and services that can find these Scoring Systemn (CWSS) White
asasrh \ia weaknesses in source code and operational systems as well as better understanding Paper Now Available
Reports and management of software weaknesses related to architecture and design. * LDRA Makes Two Declarations of
m CWE Compatibility
S —— » Software Assurance keynote and
Ol Building CWE & Consensus - Making Security Measurable table
hroos RO — - booth at International Conference
Dotuments e st e Cwecalinty on Software Quality
m = CWE/Making Security Measurable
Related Activitios booth at Black Hat DC 2011
Digcussion List 2 MO
Research Upcoming Events
CWE/SANS Top 25 = CWE/Making Security Measurable
CWss booth at RSA 2011, February 14-18
(News | » CWE/CAPEC/MAEC briefings at
SlentaE DHS/DoD/NIST SwA Forum,
1. N February 28 - March 4
Free Newsletter
= CWE/Making Security Measurable
booth at 2011 Information
Program Assurance Symposium, March 8-10
Reguirements e MIOTE
Declarations i . Status Report
Make a Declaration | s] o e T o] Version 1.11 posted December 13,
Contact Us s 2010. 7 new entries were created,
Tt e mostly related to synchronization and
"functionality inclusion.” One entry
SIS — — was deprecated. There are changes to
135 entries, especially potential
O mitigations, names, descriptions,
Similar Standards demonstrative examples, and
Attack Patterns (CAPEC) Assessment Language (OVAL) :1':;2::“‘95' ThETeNese N sohemn
Vuinerabilities (CVE) Checklist Language (XCCDF) g -
Configurations (CCE) Log Format (CEE) More Information
Platforms (CPE) Security Content Automation (SCAP cwe@mitre.org
| Malware [MAEC) Making Security Measurable
s
r
Done: |

©2011 MITRE

Protection
Analysis PLOVER

Microsoft

il

il ol

|
e

|’|||i|l:ﬂ|ﬂ§|illlhll il
!|

|

Wi b 41 Lol |
4‘1

El

{

WA A

il

!

U A

i o

i

I

i

©2011 MITRE

PLOVER

il gl o
(e

=
j“|'||.|'|
|

i
!

A O T

IYSINNNN N

AL SO & 1, Ly |

Hl i

THT A A

(i

it

tHl

f i) M
HEE Immgig

g

m

Lk

T
il

ol

draft5 " &

4. 0 L
! %ﬁm 4o
alEr .‘
HE b
] 1

|
NNy
R

+
i
Bl
|

|

—

—

L.
[I S -
e N

114
itH
]

%FT‘WH

bbbt 4

T
I

e

~+

mﬂﬂgﬂm@

)

gesifa lH
i
i

PP e |

CWE
draft 7 =

+

A B

JO, R
I

!

|

il i

2005
300 nodes

2006
599 nodes

2007
634 nodes

2008
673 nodes

2009
799nodes

Dec 2010
835 nodes

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

CWE Version 1.4

Edited by:

Steven M. Christey, Conor O. Harris, and Janis E. Kenderdine

Project Lead:
Robert A. Martin

MITRE

CWE i1s Meant for P

eople to Use

Security
Measurable™

CWE Version 1.4

Table of Contents

SjuslUOY JO BBl

CWE Version 1.4
CWE-1: Location

Status: Incomplete|

roduced during the

v Page
6og 1
69 13
699 13
699 695

nmental
Vi Page
699 1
699 i
yption 700 2
700 3
700 4
700 5
B 700 6
700 7
700 8
File 700 9
699 10
700
699 12
699 465
699 560
699 643
700 696

ES

nmental conditions

v Page
699 1
699 1
699 540
1

uoe20 L-3MD

CWE Version 1.4
ture ('SQL Injection’)

bes.
liminate the SQL

Good Cade

e boxes, the
tion user has the

h database.
Bad Code

First of all, the

in SQL. If a user
hich may bypass
data / command
Able to after the
possibly accessing
strophe are

h programmer may
revent any data /

lows SQL injection

rly encoded output.
ke Java Beans,

ion between
g, encoding, and
ability at every

ltored procedures.

ng. Do not
pxec" or similar

103

(,uonoaluj TOS,) 21Monas Aienp 1OS 2Ai2sald 0} ainjied :68-IMI

CWE Version 1.4
Index

7 - Characters and

8 - Memory Management
9 - Input Output (FIO),

0 - Environment (ENV),

1- Signals (SIG), 736
2 - Error Handling (ERR),

9 - Miscellaneous (MSC),

0-POSIX (POS), 738

joint (Man-in-the-Middle’),

[Comparison Errors, 200
rmation, 338

& Information, 342
I-Side Security, 596
(), 578

. 211
essible Directory, 560

514
Instead of Object

1 Modification of Security-
ar Buffers, 10

762

rors), 247
, 396

ctory with Incorrect
hsecure Permissions,
jhal Modifier, 521
750

ation Leak, 244
F), 373

[During Sensitive
r Injection’), 611
6

Fxception, 424
Exception, 425
I, 487

61
it Timing Channel, 539

827

xapu|

CWE Version 1.4
Index

uplicate Identifier, 692
for Authorization

h to Detect NULL Pointer

ary Authentication, 334
frmine Size, 492

ction, 670

n, 333

-thread-safe Manner,

490
Argument, 564

Fomparison, 592

79
fion, 319

les, 651

s, 287
nism for Forgotien
pa1

ERT C Secure Coding

TE, 620

(2004), 718
(2007), 619

n G, 652

n G+, 653

n Java, 655

n PHP, 657

NS Top 25 Most
739

esign, 696

703

birectories, 621

Processes, 622

jection), 107

833

Xapu|

CWE web site visitors by City

Vigits c
' I 2

Some High -Level CWEs Are Now
Part of the NVD CVE Information

[AUTOTTEToTT o7

vulnerability Overview
management, security
measurement, and SQL injection vulnerability in mods/banners/navlist.php in Clansphere 2007.4 allows remote

compliance (e.g. FISMA), attackers to execute arbitrary SQL commands via the cat_id parameter to index.php in a

banners action.
Resource Status

NVD contains: Impact
26736 CVE Vulnerabilities
114 Chacklists
91 US-CERT Alarts

CVSS Severity (version 2.0):

CVSS v2 Base score: 7.5 (High) (AV:N/AC:L/AuN/C:P/I:P/A:P) (legend)
Impact Subscore: 6.4

1997 US-CERT vuln Notes Exploitability Subscore: 10.0

2066 OVAL Queries
12410 Vulnerable Products
Last updated: os/z5/07

Access Vector: Network exploitable

Access Complexity: Low

i Authentication: Not required to exploit

CVE Publicationrate: ypnact Type: Provides unauthorized access, Allows partial confidentiality, integrity, and
16 vulnerabilities / day 3y;ilability violation , Allows unauthorized disclosure of information , Allows disruption of

Email List service

Select the email lst(s) References to Advisories, Solutions, and Tools
you wish to join, enter

your e-mail address and
press "Add" ta receive Name: 75770
NVD announcements or :

: ; inlc hitp:// . ity .com/bid/
T oo Hyperlink: http://www.securityfocus.com/bid/25770

I” NVD Announcements External Source: MILWORM [disclaimer)
I” scAP Announcements Name: 4443
™ SCAP Discussion List Hyperlink: http://www.milwOrm.com/exploits/4443

I” XCCDF Discussion List 3
- ‘”‘ddl Vulnerable software and versions

Workload Index Configuration 1
— Clansphere, Clansphere, 2007.4

Vulnerability Workload
Index: 9.06

m Technical Details

SFSDT}%E progucéof th: Vulnerability Type (View All)
= LOMPULST o8CUIILY | oy Injection (CWE-89)
Division and is sponsored

by the Department of
Homeland Security’s

National Cyber Security
Division. It supports the

External Source: BID [disclaimer)

CVE Standard Vulnerability Entry:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5061

Coanmann HMatfoens Cnnmaeatinns

NVD XML feeds

also include CWE

Vulnerability Type (View All)

SQL Injection (cmirE-sg)

v

/

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

CWE-89 Individual Dictionary Definition (Draft 9)

Weakness ID 89 (waskness Base)

Description ~ Summary
The application fails to adequately filter SQL syntax from user-controllable input.
This can lead to such input being interpreted as SQL rather than ordinary user
data and be executed as part of a dynamically generated SQL query. Thisis a
specific form of an injection problem, one that explicitly affects SQL databases, in
which SQL commands are injected inte data-plane input in order to effect the
execution of dynamically generated SQL statements.

Likelihood of Very High

Exploit

Common Confidentiality: Since SQL databases generally hold sensitive data, loss of

Consequences ctonfidentiality is a frequent problem with SQL injection vulnerabilities.
Authentication: If poor SQL commands are used to check user names and

Contact Us passwords, it may be possible to connect to a system as another user with no

previous knowledge of the password.

Authorization: If authorization information is held in a SQL database, it may be

possible to change this information through the successful exploitation of a SQL

Injection vulnerability.

Integrity: Just as it may be possible to read sensitive information, it is also possible

to make changes or even delete this information with a SQL injection attack.

Potential Requirements specification: A non-SQL style database which is not subject to this
Mitigations flaw may be chosen.
Design: Follow the principle of least privilege when creating user accounts to a SQL
database. Users should only have the minimum privileges necessary to use their
account. If the requirements of the system indicate that a user can read and
madify their own data, then limit their privileges so they cannot read/write others'
data.

Design: Duplicate any filtering done on the client-side on the server side.

Implementation: Implement SQL strings using prepared statements that bind
variables. Prepared statements that do net bind variables can be vulnerable to
attack.

Search by ID

CWE List
Full Dictionary View
Classification Tree
Reports

Sources

Key

1l - weakness
[Base
1 variant

& - Composite
@ - category
V- view

@ - Deprecated

fa e &

The Security Development Lifecycle : MSO8-078 and the SDL

- » I [=+ @2 http:/ /blogs.msdn.com/sdlfarchive/2008/12/18/ms08-078-and-the-sdl.aspx

a time-of-check-time-of-use (TOCTOU) bug that led to code calling into
on Weakness Enumeration (CWE) classification for this vulnerability is C
TOC TOU I=s0es. we will Update our training Lo address this.

—_—— Y
!
k J
The Security
Development Lifecycle

Recent Posts

MSO08-078 and the SDL

Announcing CAT.NET CTP and AntiXSS
v3 bet

SDL v oS

BlueHat SDL Sessions Wrap-up

Secure Coding Secrets?

mon te Crawl Walk Run
privacy SDL LF
t

or threat modeling

News

Blogroll

BlueHat Security Briefings

The Microsoft Security Response Center
Michael Howard's Web Log

The Data Privacy Imperative

Security Vulnerability Research &
Defense

Visual Studio Code Analysis Blog
MSRC Ecosystem Strategy Team
Books / Papers / Guidance

The Security Development Lifecycle
(Howard and Lipner)

Privacy Guidelines for Developing
Software Products and Services
Microsoft Security Development
Lifecycle (SDL) Portal

»ft Security Development
cle (SDL) Process Guidance

Microsoft Security De ment
Lifecycle ££] Process Guidance

t-do

IE Q- Google

Weicome to MSDN Blogs Sign in | Join | Help

| Sanc

MSO08-078 and the SDL Faaaox

Hi, Michael here.

Every bug is an opportunity to learn, and the security update that fixed the data binding bug that affected

Internet Explorer users is no exception.

The Common Vulnerabilities and Exposures (CVE) entry for this bug is CVE-2008-4844.

Before I get started, I want to explain the goals of the SDL and the security work here at Microsoft. The SDL is
designed as a muilti-layered process to help systemically reduce security vulnerabilities; if one component of
the SDL process fails to prevent or catch a bug, then some other component should prevent or catch the bug.
The SDL also mandates the use of security defenses whose impact will be reflected in the "mitigations"
section of a security bulletin, because we know that no software development process will catch all security
bugs. As we hawve said many times, the goal of the SDL is to "Reduce vulnerabilities, and reduce the severity

of what's missed."

In this post, I want to focus on the SDL-required code analysis, code review, fuzzing and compiler and
operating system defenses and how they fared.

Background

The bug was an invalid pointer dereference in MSHTML.DLL when the code handles data binding. It's
important to point out that there is no heap corruption and there is no heap-based buffer overrun!

When data binding is used, IE creates an object which contains an array of data binding cbjects. In the code
in guestion, when a data binding object is released, the array length is not correctly updated leading to a

function call into freed memory.

The vulnerable code locks a little like this (by the way, the real array name is _aryPXfer, but I figured
ArrayOfObjectsFromlE is a little more descriptive for people not in the Internet Explorer team.)

int MaxIdx = ArrayOfObjectsFromIE.Size()-1;

for (int i=0; i <= MaxIdx; i++) {

if (lArrayOfObjectsFromIE[i])

continue;

ArrayOfObjectsFromIE([i)]—-—>TransferFromSource() ;

}

Here's how the vulnerability manifests itself: if there are two data transfers with the same identifier (so
MaxIdx is 2), and the first transfer updates the length of the ArrayOfObjectsFromIE array when its work was
done and releases its data binding object, the loop count would still be whatever Maxidx was at the start of

the loop, 2.

This is|la time-of-check-time-of-use

{TOCTOU) bug that led to code calling into a freed memory block. The
Commpn Weakness Enumeration {CWE) classification for this vulnerability is CWE-367.

i e Fie £

) /‘rﬁx was to check the maximum iteration count on each loop iteration rather than once before the locop
LI TN 3 TN H 12w IO L o 1o " 1 2l == S-S

PO o T

September 2008 (5)
August 2008 (2)
July 2008 (8)

June 2008 (4)

a freed memory block.
VE-36/7.

Our static analysis tools don't find this because the tools would need to understand the re-entrant nature of

the code.

Fuzz Testing

anNnn SAMATE Reference Dataset
| 4 & | | & | 1 htp:f/samate.nist.gov/SRD/ © 5 Q- Google Q)
>

G

[I1 AFC Home MIllHome Searchv Map/Ph/Weather/Travelr Boh's Bookmarks CVEnOVAL~+ OVALshared SPAMmngiv
reglstar |

» slgnin

Search...

Software Assurance Metrics and Tool Evaluation

SRD Home View/Downioad Search/Download More Downicads Submit Test Suites

Welcome to the NIST SAMATE Reference Dataset Project

The purpose of the SAMATE Reference Dataset (SRD) is to provide users, researchers, and software security assurance tool developers with a
set of known security flaws. This will allow end users to evaluate tools and tool developers to test their methods. These test cases are
designs, source code, binaries, etc., i.e. from all the phases of the software life cycle. The dataset includes “wild™ (production), "s¥nthetic™
{written to test or generated), and "academic” (from students) test cases. This database will also contain real software applicd
known bugs and vulnerabilities. The dataset intends to encompass a wide variety of possible vulnerabilities, languages, platfi
compilers. The dataset fs anticipated to become a large-scale effort, gathering test cases from many contributors. We have more in
about the SRD, including goals, structure, test suite selection, etc. NISI.

Draft Special Publication 500-268

Browse, download, and search the SRD P
Anyone can browse or search test cases and download selected cases. Please click here to browse the test case repository; or . .
selected or all test cases. To find specific test cases, please click here. Source Code Security Analysis Tool

Functional Specification Version 1.0

How to submit test cases

Information Technology Laboratory (ITL), Software

NIST Special Publications: Diegnbetios and Conloymance Taetig Division
SP500-268 CWE 28 slouany, 2007
SP500-269 CWE _—
SP800-53a CVE, OVAL, CWE Vet Ko
SP800-115 CVE, CCE, CVSS, CWE

NIST Interagency Reports:
NISTIR-7435 CVE, CVSS, CWE el
NISTIR-7628 CVE, CWE

INL/EXT-10-18381

U.S. Department of Energy
Offfice of Electricity Delivery
and Energy Reliability

NSTB Assessments
Summary Report:

Common Industrial Control
System Cyber Security
Weaknesses

May 2010

National SCADA Test Bed
Enhancing control systems security in the energy sector

ldaho National Labs SCADA Report

'b-"‘ 2
Level 4 — -
Enterprise Systems: Corporate Netwark ,D
Business Planning
and Logistics / Business
Engineering Systems Servers
ICS Web ICS Business :
S < ~4_ Corporate }
Application Client Application Clienlr Honts
o
TAN / WAN / DMZ 0
Level 3
Operations Managemsnl ICCP Server
System Management / OPC Server
Supervisory Control Information Server
Application Server

Repllcated

Web Server
Database

Level 2

Supervisory Control Equipment:
Supervisory Control Functions /
Site Monitoring and

r e
istorical Q
Dalabase

SECURE CONTROL SYSTEM/ENTERPRISE ARCHITECTURE Local Display -
- ~Supervisory Control LAN D
MODEM Data o .
Riufns Poo! Server Istori Server 2 Server Cm:l:u:mrs Workstation @
Field Locati . @ @ @ @ @ @ -
© o . ‘ ‘ ‘ ‘ Supervisory gata ‘t:lme Communications
Control Local Display Slghe Processor
‘g- (CONTROL SYSTEM LAN
Backup X External = -
Contrl . e o Authenticaticn (Control Network D
P /_D;’ e o Level 1 — -
é w=us=m. ’ @ Control Equipment: . ,J-——
R @ Protection and &
fCcPfother business o] Local Control Devices
‘ PEERS : Distributed PLC
s e Pl Control
S — ’ e ; BS‘:;i\'ll:rsss wm“ !wub Applications
) - -
| Level 0 (IIE— NBtWOI‘k
Equipment Under Control: 1 I

External
Communications
Infrastructures

Corp. U
Firewall

%“w @: 1DS Sensor

Sensors and Actuators

Temperature
Sensor

Pressure
Sensor

Table 27. Most common programmin

o errors found in ICS code.

‘Weakness Classification

VYulnerability Type

CWE-19: Data Handling

CWE-228: Improper Handling of Syntactically Invalid Structure

CWE-229: Improper Handling of Values

CWE-230: Improper Handling of Missing Values

CWE-20: Improper Input Validation

CWE-116: Improper Encoding or Escaping of Output

CWE-195: Signed to Unsigned Conversion Error

CWE-198: Use of Incorrect Byte Ordering

CWE-119: Failure to Constrain
Operations within the Bounds of a
Memory Buffer

CWE-120: Buffer Copy without Checking Size of Input (*“Classic
Buffer Overflow™)

CWE-121: Stack-based Buffer Overflow

CWE-122: Heap-based Buffer Overflow

CWE-125: Out-of-bounds Read

CWE-129: Improper Validation of Array Index

CWE-131: Incorrect Calculation of Buffer Size

CWE-170: Improper Null Termination

CWE-190: Integer Overflow or Wraparound

CWE-680: Integer Overflow to Buffer Overflow

CWE-398: Indicator of Poor Code
Quality

CWE-454: External Initialization of Trusted Variables or Data Stores

CWE-456: Missing Initialization

CWE-457: Use of Uninitialized Variable

CWE-476: NULL. Pointer Dereference

CWE-400: Uncontrolled Resource Consumption (“Resource
Exhaustion™)

CWE-252: Unchecked Return Value

CWE-690: Unchecked Return Value to NULL. Pointer Dereference

CWE-772: Missing Release of Resource after Effective Lifetime

CWE-442: Web Problems

CWE-22: Improper Limitation of a Pathname to a Restricted Directory
(““Path Traversal")

CWE-79: Failure to Preserve Web Page Structure (““Cross-site
Scripting™)

CWE-89: Failure to Preserve SQL Query Structure (**SQL Injection™)

CWE-703: Failure to Handle
Exceptional Conditions

CWE-431: Missing Handler

CWE-248: Uncaught Exception

CWE-755: Improper Handling of Exceptional Conditions

CWE-390: Detection of Error Condition Without Action

A Human Capital Crisis in
Cybersecurity
Technical Proficiency Matters

A White Paper of the
CSIS Commission on Cybersecurity for the 44th Presidency

COCHAIRS
Representative James R. Langevin
Reprezentative Michael T.McCaul
Scott Charney
Lt. General Harry Raduege,

USAF (ret)

16 July 2010

based on a body of knowledge that represents the complete set of concepts, terms
and activities that make up a professional domain. And absent such a body of
knowledge there is little basis for supporting a certification program. Indeed it
would be dangerous and misleading.

A complete body of knowledge covering the entire field of software engineering may
be years away. However, the body of knowledge needed by professionals to create
software free of common and critical security flaws has been developed, vetted
widely and kept up to date. That is the foundation for a certification program in
software assurance that can gain wide adoption. It was created in late 2008 by a
consortium of national experts, sponsored by DHS and NSA, and was updated in late
2009. It contains ranked lists of the most common errors, explanations of why the
errors are dangerous, examples of those errors in multiple languages, and ways of

eliminating those errors. It can be found at hitp://cwe mitre.org/top2d.

Any programmer who writes code without being aware of those problems and is not
capable of writing code free of those errors is a threat to his or her employers and to

others who use computers connected to systems running his or her software.

pPREiecrruccorng

A complete body of knowledge covering the entire field of software engineering may
be years away. However, the body of knowledge needed by professionals to create
software free of common and critical security flaws has been developed, vetted
widely and kept up to date. That is the foundation for a certification program in
software assurance that can gain wide adoption. It was created in late 2008 by a
consortium of national experts, sponsored by DHS and NSA, and was updated in late
2009. It contains ranked lists of the most common errors, explanations of why the
errors are dangerous, examples of those errors in multiple languages, and ways of
eliminating those errors. It can be found at http://cwe.mitre.org/top25.

Any programmer who writes code without being aware of those problems and is not
- capable of writing code free of those errors is a threat to his or her employers and to

securiy Others who use computers connected to systems running his or her software.,

Measurab

©2011 MITRE

Foreword

In 2008, the Software Assurance Forum for Excel-
lence in Code {SAFECode) published the first version
of this report in an effort to help others in the
industry initiate or improve their own software
assurance programs and encourage the industry-
wide adoption of what we believe fo be the most
fundamental secure development methods This
work remains cur most in-demand paper and has
been downloaded more than 50,600 times since its
original relesse

However, secure software development is not only a
goal, it is also 3 process. In the nearly two and 3 half
years since we first released this paper, the process
of building secure software has continued to evolve
and improve alongside innovations and advance-
ments in the information and communications
technology industry. Much has been learned not

only thraugh increased o

bringing these methods together and sharing them
with the larger community, SAFECode hopes to
mave the industry beyond defining theoretical best
practices to describing sets of software engineer-
ing practices that have been shown to improve

the security of software and are currently in use st
leading software companies. Using this approach

Industry
Uptake

enables SAFECode to encoura
best practices that are p
and implementzble even

requirements and develo;
taken into account.

Though expanded, o
remain—keep it co
What's New

This edition of tfle paper prescri
updsted securfy practices that

during the Dyfsign, Programming

but also through the ongoing internal efforts of
SAFECode’s member companies, This 2nd Edition
aims to help disseminate that new knowledge.

Just as with the original paper, this paper is not
miant to be 3 comprehensive guide to all possible
secure development practices. Rather, it is meant to
provide a foundational set of serure development
practices that have been effective in improving

ties of the
practices flave been shown to by
diverse fevelopment environme]

arigingl also covered Training, RY
Handfing and Documentation. 1

1y The paper also contains two important, additional
| sections for each listed practice that will further
increases its value to implementers—Common
== ationd Weakness Enumeration (CWE) references and
Verification guidance.

1171 Software Assurance Forum for Excellence in Cade

7 SAFECod
21111

'{?ZZ D
180w DOriving Security and Integrity

e

rification planisa dir

treatment in A

sefurity enginesring training/nd software integrity
the global supply chain, £nd thus we have refined

our focus in this paper tyfeoncentrate on the core

areas of design, develgfment and testing.

FEmFIE.

vailable that support the Threat Model-
ess with automated analysis of designs and

ar

software security in real-world impl by
SAFECode members across their diverse develop-
ment environments.

It is impartant to note that these are the "practiced
practices” employed by SAFECode members, which
we identified through an ongoing analysis of our
members'individual software security efforts. By

'SAFECode

Driveng Security and tntegrity

estions for possible mitigations, issue-tracki
ration and communication related to

‘their Threat
ere tools are used

ss. Some practitioners have ho
eling process to the pail
tomate as much of#8s possible, raising the

[ptability of thefrocess and providing another
of 5 rt with standard diagramming,

ion, integration with a threat database and

fases, and execution of recurring tasks.

Making
Security
Measurable*

CWE References

tive of the re of the Threat Model acy
Threat pAGdel itself will serve as a clear ro

Tication, containing enough informati
each threat and mitigation can be verd

During verification, the Threat Model and
mitigated threats, as well as the annotaty
tectural dizggrams, should also be made &
to testers in order to help define further
and refine the verification process. A revig
Threat Model and verification results sho
made an integral part of the activities req

dedlare code complete.

Fundamental Practices for

Secure Software Development
2ND EDITION

A Guide to the Most Effective Secure
Development Practices in Use Today

February 8,2om

EpiTor Stacy Simpson, SAFECode

AUTHORS

Mark Belk, Juniper Networks Mikko Saario, Nokia

Matt Coles, EMC Corporation Reeny Sondhi, EMC Corporation
Cassio Goldschmidt, Symantec Corp. Izar Tasandach, EMC Corporation
Michael Howard, Microsoft Corp. Antti Vaha-Sipila, Nokia

Kyle Randolph, Adobe Systems Inc. Yonko Yonchev, SAP AG

An example of a portion of a test plan derived from

Much of CWE focuses on implementation issues,
and Threat Modeling is a design-time event. There
are, however, a number of CWEs that are applicable
to the threat modeling process, induding:

= CWE-287: Improper authentication is an example
of weakness that could be exploited by a Spaof-
ing threat

CWE-2B4: Permissions, Privileges, and Access
Controls is a parent weakness of many Tamper-
Ing, Repudiatian and Elevation of Privilege
threats

CWE-3n: Missing Encryption of Sensitive Data is
an example of an Information Disclosure threat

CWE-400: (uncontrolled resource consumption)
iz one example of an unmitigated Denial of

Service threat

a Threat Model could be:

Design Mitigation

Element{s)

Verification

Sesslon cul Ensure ran- Collect session
Hifacking dom session | identifiers
identifiers of | overa number
appropriate | of sessions
fength and examine
distribution and
langth
Tamgpering | Process & Use 55Lto Assert that
with data | onserverte | ensurethat | communica-
inftransit | Process Bon | dataisn't tion cannot
client madified in be established
transit without the use
of S5L

<

'SAFECode

i
1@ | Dviving Security and Integrity

E

©2011 MITRE

challengers

leaders

[N

Y
?M
'q; HP (Fortify Software)
5 Veracode
O
@ . Parasoft ./.l
% Covenqk FK
o " |
-
= @ Klocwork
e
© ® GrammaTech ® Checkmarx
T JArmorize Technologies\
.

\. J

niche players visionaries
\. |

Source: Gartner

completeness of vision F——p~

As of December 2010

Gartner Magic Quadrant

for
Static Application
Security Testing Tools

Plus Some Other
Important Tool
Players...

Cenzic

CAST Software

Polyspace

Security Innovation

LDRA

KDM Analytics

Surelogic

Programming Research Inc
SofCheck

©2011 MITRE

CWE Compatiblility & Effectiveness Program

(Iaunched Feb 2007)

8 B 8 CWE - CWE Compatibility

. tht‘(p che mitre.org/compatible findex.html @ BlQ- Go gl

:f—ﬁ AFCHome Mil Home Searchv Map/Ph/Weather/Travelv Bob's Bookmarks ¥ CVEnOVALw OVAL shared SPAMmngty LogoutofSPAMmngt. =

WE Common Weakness Enumeration
= = A community-developed dictionary of common software weaknesses

CWE Compatlblhty Section Contents

Compatibility

|

SECURITY DATABASE |[(D)|\] Analytics VERACODE FORTIFY
" technologies SecurityReason SklllBrldge e

an
ywecure Your Web Code Our Reason is Security *
MC CODENOMICON defensics -

0 CENZIC @ GRAMMATECH . :
i ymantec. 2 C/ CE
|p/.\ VSofCheck , ZEFE Y e (I5C) -

@ WalCHIIRe' NS s OUNCE |

®
PR l!]&‘ cigital (@ SPI ©OYNAMICS ¥
L 1E R LDRA N

| |
cwe.mitre.org/compatible/

Q?EE“!EEE!EFE Barticipating

All organizations participating intheCWE . December2s, 2008
Compatibility and Effectiveness Program are TOTALS

listed below, including those with CWE- Organizations Participating: 29

Compatible Products and Services and those Products & Services: 48 E—

with Declarations to Be CWE-Compatible.

Products are listed alphabetically by organization name:
©2011 MITRE

ALLLRCL L L L L B L R L e il LU L L L L R ALl

sase) 1S3 eAer

"y
g T

LULELEL L LU L

s2seD) 1s2 D)

C/C++ “Breadth” Test Case
Coverage

0% No Tools

 Coverity
1%

. Six Tools
- Fortify ©

3% ||

Five Tools
7%

 Klocwork

Four Tools
0,
~._Ounce Labs
Two Tools 29%
Four Tools 1%
15%
Three Tools Three Tools
13% 18%
Making
Security
Measurable™

One Tool
12%
~ GrammaTech Five Tools l}_‘

Two Tools
15%

One Tool
14%

Java “Breadth” Test Case
Coverage

Coverity
/ 0%

\ FindBugs
1%

. Forty
1%

~_Klocwork
1%

Ounce Labs

%
\PND

2%

©2011 MITRE

Code Analysis Effectiveness Assessment...

CWE
Validation
Effectiveness
Testing - ?

All of these are aimed at different@ggects of unde
find CWEs in software applicationsainéivgbadvcan be
standardize the process for expressing a tools capab

CWE

Compatibility

and

Effectiveness

CWEs with
WhiteBox
Definitions

Center For

A a A
y

Tool Evaluation

Tool Evaluation

2009

|ARPA

STONESOUP-
Securely Taking

On New

Executable Stuff

Of Uncertain
Provenance

OSDI/NII

NIST
SAMATE
SP 500-267
SP 500-269
SP 500-270

SAMATE
Repository
Dataset
(SRD)

Automated
Test Case
Generator

NIST SATE
SATEO8
SATEQ

SySA Task
Force
WhiteBox
Definitions-to-
SBVR-to-
microKDM

ng how well tools

§ one to improve that and

ilities.

—_— O coverity CWE Coverage —
Implemented...

Coverity Coverage for Common Weakness
Enumeration (CWE): lava

|_ 7 I T | — CWE 125 mapped to Kloowork Java 1ssue Lypes - curent PR Mook conty prod ucksdocunemationicurnz ...

¢) coverity

BAD EQ

252 CHECKED RETURN

CWE IDs mapped to Klocwork Java issue
types

o Coverity Coverage For Common Weakness From current
| am | oc.coniNa_STYLE ! Enumeration (CWE): C/Cs+ CWE IDs mappad 1o Klscwork Java issua typas

‘ . BAD_OVERRIDE See also Detected Java lssues.
DC.EXPUICIT DEPRECATION

INDIRECT GUARDED BY

GUARDED 8Y VIOLATION ‘
!
266 VIOLATION

| NOH STATIC. GUARDING STATIC

ococ es cription

GWE 125 nappad w Kletwark C and G 11 5505 typosia -.. Rt Pz KIog el iR GO prod usts desan oationicurtcn.
Al poes to native code
tor control flow

MUTABLE COMPARISON

398 MUTABLE HASHCODE TAINTED SCALAR

Arhitrary control of a resour tampering

s s CWE IDs mapped to Klocwork C and C++ on
; issue typesija

() CENZIC et e s

Waorking Directory
[(Stored XSS)

From current
Cenzic Product Suite is CWE Compatible Refeclad XSS
< CWE IDs mapped to Kiocwork G and C++ issue types dl !

Conzic Hailstern Enterprise ARC. Conzic Hailstorm Professional and Cenzic ClickTeSocure are

comgatible with the CYWE standard or Commen Weakness Enamoeration as maintaned by Mire Arbitcary coste exacatioe; CWE IDs mapped to Klozwork C and G < issue typesia ﬁ;’éﬁ:jjﬁ;ss'
Caporabon. Web socurity assessmont resulis from tho Halslorm preduct suile are mapped o ¥
thie relevant CWE ID's praviding ugers with aaditional infernation 1 cassify and degeribe Aftwr contrs ow F DA IESE Detected C and C++ Issues.
comman weaknesses lound in Web applications. Pend senitsrs iviormation) . i information from the
i of service CWE ID T i
Tor additional details et SWE. please visit Ditpo oo mire o ndes il ABV.TAINTED =l Aot 200 07 d— /- 20—
i Stk g] 5 20 SV.TAINTED.GENERIC i =515 — 3 D i
The follewing s 2 inapping betiesn Conzis's Smaititacks and CUE 10's (nttp:fiewe.mireorg |SV.TAINTED.ALLOC_SIZE < EIL % T 12 517 SR45E DD jorms: validate method
Cenzic dataldefinitions Lol
SmartAttack CWE 1Dis /20.html) SV.TAINTED.CALL.INDEX_AGCESS =BIfi 103 L I fi &7 lorms: inconsistent validate
Name BRI A 7w 7 L TOWE
Application) 22 = Splitting
Exception CWE-388: Error Handing e (hitpflewe mitre.org|SV.GUDS MISSING ABSOLUTE PATH 7 (L bO— ¥ T @it piting
Application , A —— idata/definitions DB
Evvoption fvws] COWE-388: Emar Handing Pty metee R 22 htm)
Application Path . prype " , - : 73 s
Disclosure CWE-200: Information Leak ireugh match) B Derind ot werves (htp:iewe.mitre.org |SV.CUDS MISSING_ABSOLUTE_PATH J 71 JLOC— |5 T i px used for armay access
Authentication CWE-B9: Failure to Sanitize Data into SQL Queries (aka scxcr st o (datardefintions S ADFER
Bypass 'SEL Injection's frough match) Ceatinat x e /73 .html)
Autharization CWE-285; Missing or Inconzistent Access Gontral. CWE-425 aunded source bfter 74
Boundary Direct Request ('Forced Browsing't (hitp:ficwe mitre.org e s o
SV TAINTEDINJECTION ¥ 2/ | « /1043 26T 1035
8ind QL CWE-89: Fallure 10 Saniiize Data infn S0 Queries faka datardefinitions LTS M
Injection 'SGL Injection’ /74 html)
Blind SQL CWE-89' Failurs to Sanitize Data into QL Jueries (aka 7T
Injection {¥J/5} 'SGL Injection’ (hitp:ficwe.mitre.org |SV.CODE_INJECTION.SHELL_EXEC ¥ TILRFAOIVLE 12
Browse HTTP CWE-200: Information Leak idata/definitions I 73y
fram HTTFS List /77 html)
9 Brule Force Login | CWE-521: YWeak Password Require ments 78 - . N .-
" . NNTS. TAINTED - ARRADNY I T F—N—70—
10 Buffer Cverflow CWE-120: Unbounded Transfer ('Classic Buffer Gverflow'y :gttp-}g;u;em.[renrg e NULL%QHI@?JB HATDREADIS T F 7
ata/definitions : b R o
1 tﬂv‘fs"?' Cverlow CwE-120; Unbounded Transfer (‘Classic Buffer Gverflow') 78 At SVTAINTEDINJECTION 3 2 | o v T 025
Check Basic Auth CWE-200: Information Leak 28 SVTAINTEDINJECTION 9 | 721223)
ower HTTP (nttp:fiowe mitre.org [NNTS TAINTED A b fE 1 — A hniBEO vy 3 7 A —n{—70—
- Check HTTR gi\:EE-SSEI: Trusting HTTP Permissian Methads oh the Server
Methods
1077 EIENT WEEE AN
Cenzie CWE Brochure | Grtaber 2009 1

©2011 MITRE

Behavioral Problems Channel and Path Errors

Initialization and
Cleanup Errors

Bmgmed fmrstailds

P vy, Ml ST e by e L v ol Bt o

“RetiralC sl uf Coimynd Wt s AR

Common Security Errors in Programming

*En ey il g by Lomp
« Sl B ima nares v Peaca bl lps

LT W aaen b Wi b | pwision
g
| Nenrnc ke ladrraivd bim i Thuea Mask eral]

» Pamubly bybatjaafiem

SANY MITRE

. A9 Top 15 CVE Cimipes
and impertant COWES

Wemmers B I e 302 oo S B RTE HIH TR A
e
R T - o benciand farms B
" oy, weder i s i I et wsdee
o CFE I o fnd
s e Dy 8

T
b bl e gt s

Namiten bmvar pousn b e i i i o 1 ol
e TR O el on s e Ty g et |l
hitp:rmes miirs cepdvinidefnmnra lree himl

Sperial oy Ladaberrd Wartn o WTFF Enperaton

Failure to Fulfill ARl Contract
[‘AP1 Abuse’)

& Whyrary Baww s [ypimgiapha Vg
oy o W Y e O

1'as Crpimpapbpls Pusmedy -rrlllr-ilnﬂil

- il Panimct e Bewrmssma
« 5 Ui Pt g
Frepbem Crnh p mHE T v Wiy

+ Fanrmcrd Mg s Larg Box nims
Tarai artos

o Fegursacis and Parars -Whesdi Pranmcr e B4 ey Machami w ki Fergaiia

—
s ParepT]
e

+ By pt i o Tawanss as Urararad Da s ot
Trarsd Qus

+ grapedy Trrssd Sevs sn DR

o WTTP Fenue

TP Hcsd

g Dt sl Pulive. Tl
- iz | Mesnnd Carbiesd Bk

With all of
these CWEsS,
where do you
start?

2009 SANS/CWE Top 25 Programming Errors
(released 12 Jan 2009)

Making
Security
Measurable™

cwe.mitre.org/top25/

806

why SANS?

The right security training for your staff, at the right time, in the right place.

certification resources

training

pick a course

SANS Institute - CWE/SANS TOP 25 Most Dangerous Programming Errors

vendor

why certify?

portal

register now

I :orch

storm center college developer about

806

CWE - 2009 CWE/SANS Top 25 Most Dangerous Programming Errors]

CWE/SANS TOP 25 Most [

Experts Announce Agreement on th
And How to Fix Them
Agreement Will Change How Organ|

Q4

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

Project Manager: Bob Martin, MITRE
Questions: top25@sans.org

-
= PDF For Printing

(January 12, 2009) Today in Washington, DC, ex|
organizations jointly released the consensus lis|
security bugs and that enable cyber espionage
well understood by programmers; their avoidarn
their presence is frequently not tested by orgd

The impact of these errors is far reaching. Justj
breaches during 2008 - and those breaches casq
sites, turning their computers into zombies.

People and organizations that provided substan
the most respected security experts and they
Microsoft, to DHS's National Cyber Security Divig
the Japanese IPA, to the University of Californii
Institute managed the Top 25 Errors initiative,
Security Agency and financial support for MITRH
Homeland Security’s National Cyber Security Dif
National Cybersecurity Division at DHS have con|
improve the security of software purchased by

What was remarkable about the process was hq |

heated discussion. "There appears to be broad
Mason Brown, "Now it is time to fix them. First
write code that is free of the Top 25 errors, an
processes in place to find, fix, or avoid these p
free of these errors as automated tools can ver|

Tho Office of tho D nd bl | lokollioa o

Full Dictionary View
Development View
Research View
Reports

About |
Sources
Process
Documents

Related Activities
Discussion List
Research
CWE/SANS Top 25
CWsS

Calendar
Free Newsletter
Compatiblility
Program
Requirements
Declarations
Make a Declaration

Search the Site

Section Contents

CWE/SANS Top 25
Supporting Quotes
Contributors

2009 CWE/SANS Top 25 Most Dangerous
Programming Errors

On the Cusp

Top 25 FAQ
Document version: 1.0 (pdf) Date: January 12, 2009 Top 25 Process

Change Log

Document Editor:
Steve Christey (MITRE)

Project Coordinators:
Bob Martin (MITRE)
Mason Brown (SANS)

Alan Paller (SANS) http://cwe.mitre.org/top25

Introduction

The 2009 CWE/SANS Top 25 Most Dangerous Programming Errors is a list of the most significant
programming errors that can lead to serious software vulnerabilities. They occur frequently, are often
easy to find, and easy to exploit. They are dangerous because they will frequently allow attackers to
completely take over the software, steal data, or prevent the software from working at all.

The list is the result of collaboration between the SANS Institute, MITRE, and many top software
security experts in the US and Europe. It leverages experiences in the development of the SANS Top 20
attack vectors (http://www.sans.org/top20/) and MITRE's Common Weakness Enumeration (CWE)
(http://cwe.mitre.org/). MITRE maintains the CWE web site, with the support of the US Department of
Homeland Security's National Cyber Security Division, presenting detailed descriptions of the top 25
programming errors along with authoritative guidance for mitigating and avoiding them. The CWE site
also contains data on more than 700 additional programming errors, design errors, and architecture
errors that can lead to exploitable vulnerabilities.

The main goal for the Top 25 list is to stop vulnerabilities at the source by educating programmers on
how to eliminate all-too-common mistakes before software is even shipped. The list will be a tool for
education and awareness that will help programmers to prevent the kinds of vulnerabilities that plague
the software industry. Software consumers could use the same list to help them to ask for more secure
software. Finally, software managers and CIOs can use the Top 25 list as a measuring stick of progress
in their efforts to secure their software.

L R

20010 CWE/SANS Top 25 Programming Errors
(released 16 Feb 2010) cwe.mitre.org/top25/

e Sponsored by:
- National Cyber Security Division (DHS)
o List was selected by a group of security experts fr om 34
organizations including:
- Academia: Purdue, Northern Kentucky University
— Government: CERT, NSA, DHS
— Software Vendors: Microsoft, QANG = s s e s

The most trusted source for computer security training, certification and research.

]
O r i l C | e R e d H i | t A I e l u n I e r training certification resources vendor portal storm center college developer about
]]]]

CWE/SANS TOP 25 Most Dangerous Programming Errors

McAfee, Symantec, Sun, = p—

Forensics, Investigations, Response, and Education

s og will
discuss each of the Top
25 in a series of daily

postings between 22
Feb and 26 March.
O What Errors Are Included in the Top 25 Programming Errors?
Version 2.0 Updated February 16, 2010

Visit the blog to leam
more, see useful
The Top 25 Programming Errors are listed below in three categories: resources and enter the

- Security Vendors: Veracode, e

ses (7 errors)

Yearly Archive

. - . . Click on the headline in any of the listings (or the MORE link) and you will be directed to the relevant spot in
Fo rtlfy Mandiant, Ci g ital, SRI R
2009

Ranking of each Top 25 entry,
Links to the full CWE entry data,
- Data fields for weakness prevalence and consequences,
ecunia, Breac spec
))) b} Code examples,
Detection Methods,
Attack frequency and attacker awareness

— Security Groups: OWASP, WASC o

Each entry at the Top 25 Programming Errors site also includes fairly extensive prevention and remediation
steps that developers can take to mitigate or eliminate the weakness.

/N

Making
Secu rjty Programming Error Category: Insecure Interaction Between Components Real Threats,
M ble~ [1] CWE-79: Failure to Preserve Web Page Structure (‘Cross-site Scripting’) Real Skills,

gasurable Cross-site scripting (XSS) is one of the most prevalent, obstinate, and dangerous vulnerabilities in web Real Success

applications. ..If you're not careful, attackers can.

SANS
Cyber Guardian
Program

[2] CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection’)
If attackers can influence the SQL that you use to communicate with your database, then they can...MORE >

Main Goals

o Raise awareness for developers
o Help universities to teach secure coding

o Empower customers who want to ask for
more secure software

e Provide a starting point for in-house
software shops to measure their own
progress

©2011 MITRE

@f@w ([f _http:che.mitre.nrg,ftapESfindex.html 'i:.i"'—" (:-"'.'- Google

CWE - 2010 CWE/SANS Top 25 Most Dangerous Software Errors ==}

I
Common Weakness Enumeration ||:8 MOST DANGEROUS
A Community-Developed Dictionary of Software Weakness Tvpes SOFTWARE
ERRORS

Full Dictionary Wiew

Devalopment View
Research Wiew
Reports

Sources
Procass

Dotuments

Retated Activitios
Digcresion List
Research
CWE/SANS Top 25

ig

Calendar

Free Newsletter
Compatibility
Program
Reguiremeants
Declarations

Make a Declaration

i

Search the Site

Section Contents

CWE/SANS Top 25
Contributors
Supporting Quotes
Monster Mitigations
Focus Profiles
On the Cusp
Documents & Podcasts
Training Materials

2010 CWE/SANS Top 25 Most Dangerous
Software Errors

Copyright © 2010
http://fcwe.mitre.org/top25/

The MITRE Corporation

Top 25 FAD
Top 25 Process
Document version: 1.06 (pdf) Date: September 27, 2010 Change Liod

SANS News Release

Section Archives
2009 CWE/SANS Top 25

Supporting Quotes
Contributars

On The Cusp
Change Log

Document Editor:
Steve Christey (MITRE)

Project Coordinators:

Bob Martin (MITRE)
Masaon Brown (SANS)
Alan Paller {SAMNS)
Dennis Kirby (SANS)

Introduction

The 2010 CWE/SANS Top 25 Most Dangerous Software Errors is a list of the most widespread and
critical programming errors that can lead to serious software vulnerabilities. They are often easy to
find, and easy to exploit. They are dangerous because they will frequently allow attackers to
completely take over the software, steal data, or prevent the software from working at all.

The Top 25 list is a tool for education and awareness to help programmers to prevent the kinds of
vulnerabilities that plague the software industry, by identifying and avoiding all-too-common

mistakes that occur before software is even shipped. Software customers can use the same list to =
heln them to ask for more secure software. Researchers in software securitv can usethe Ton 25ta 7

=

000 CWE - Top 25 Credited Contributors
R henc Seaco d CERT Rvan Bame{t Breach [«[» J[+ [CFhuep:/jcwe.mitre.org/top2s /contributors.htm ¢ Q- Google)
. \, Common Weakness Enumeration
Foca Mewer -~~~ CERIAS, e ety Moo forkes N Ad QUUE sommsnMesknszs Ermeraten 2 O 1 O —
[BiShOD upsolby of Palfnenin e Anels Dinomnf 11 M’Tv EOTSE o jitnd Conteibae
o S“""““‘"ﬁfé:ﬁfis
. “ Microsoft: = -
=
Masto Trda CE 1o e
Sen Baum B

Mahesn Sﬂptarsm Comtes Sor Educstion and Ressarch O IQAC— I ; -

(st Gl @%
- | St EMC’ g

3o Wilms
Secu nia SRI International

Carstn Eiram Stay Secure

= NSApHs |pa TR

i Hoverd G R AM M ATE c H wronua*nou-re-:c-:ﬁmocv PROMOTION AGENCY, JAPAN

Bruce Lowentnal

bk, Co SRA FORTI F Y ’ SyrnanteC..

5SS O F T W A R

T e) | technOIOgIBS VE RACO.I)E

Dinane Cmper . Secure Your Web Code

James Welgen \ - i .
Frank Kim) ee TWORKS
Chris Eng ational Cyber Security Division of the U.S. Department of Homeland Securit Privacy policy

TG T
Chis Wysal Veracce 2009

@OF=— OVE - 200 CWE/SANS Top 25 Mot Dangerous Pograming Errs —

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received between separate components, modules,
programs, processes, threads, or systems.

CWE-20: Improper Input Validation

CWE-116: Improper Encoding or Escaping of Output

CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection’)

CWE-79: Failure to Preserve Web Page Structure (aka 'Cross-site Scripting')
CWE-78: Failure to Preserve OS Command Structure (aka 'OS Command Injection')
CWE-319: Cleartext Transmission of Sensitive Information

CWE-352: Cross-Site Request Forgery (CSRF)

CWE-362: Race Condition

CWE-209: Error Message Information Leak

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly manage the creation, usage,
transfer, or destruction of important system resources.

s CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer
e CWE-642: External Control of Critical State Data

» CWE-73: External Control of File Name or Path

¢ CWE-426: Untrusted Search Path

+ CWE-94: Failure to Control Generation of Code (aka 'Code Injection')

» CWE-494: Download of Code Without Integrity Check

+ CWE-404: Improper Resource Shutdown or Release

s CWE-665: Improper Initialization

o« CWE-682: Incorrect Calculation

Porous Defenses
The weaknesses in this category are related to defensive techniques that are often misused, abused, or just plain ignored.

o« CWE-285: Improper Access Control (Authorization)

+ CWE-327: Use of a Broken or Risky Cryptographic Algorithm

e CWE-259: Hard-Coded Password

e CWE-732: Insecure Permission Assignment for Critical Resource
o CWE-330: Use of Insufficiently Random Values

o CWE-250: Execution with Unnecessary Privileges

+ CWE-602: Client-Side Enforcement of Server-Side Security v

el

Insecure Interaction Between Components
These weaknesses are related to insecure ways in which data is sent and received between separate components, modules, programs, processes, threads, or systems.

For each weakness, its ranking in the general list is provided in square brackets.

Rank CWE ID Name |
[11 CWE-79 Failure to Preserve Web Page Structure ('Cross-site Scripting') |
[2] CWE-89 Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection') |
[4] CWE-352 Cross-Site Request Forgery (CSRF)

[8] CWE-434 Unrestricted Upload of File with Dangerous Type

[9] CWE-78 Improper Sanitization of Special Elements used in an 0S Command ('0S Command Injection')

[17] CWE-209 Information Exposure Through an Error Message

[[23] |lcwe-s01 ||URL Redirection to Untrusted Site ('Open Redirect) |
[[25] |lcwe-362 ||Race Condition |

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly manage the creation, usage, transfer, or destruction of important system resources.

Rank | CWEID Name |
[3] CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer QOverflow') |
[7] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

[12] CWE-805 Buffer Access with Incorrect Length Value

[13] CWE-754 Improper Check for Unusual or Exceptional Conditions

[14] CWE-98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File Inclusion')

[15] CWE-129 Improper Validation of Array Index

[16] CWE-190 Integer Overflow or Wraparound |
[18] CWE-131 Incorrect Calculation of Buffer Size |
[20] CWE-494 Download of Code Without Integrity Check |
|[22] HCWE-??O ||A110cation of Resources Without Limits or Throttling |

Porous Defenses

The weaknesses in this category are related to defensive techniques that are often misused, abused, or just plain ignored.

Rank CWE ID Name
[5]1 CWE-285 Improper Access Control (Authorization)
[6]1 CWE-807 Reliance on Untrusted Inputs in a Security Decision |
[10] CWE-311 Missing Encryption of Sensitive Data
[11] CWE-798 Use of Hard-coded Credentials
[19] CWE-306 Missing Authentication for Critical Function |
[21] CWE-732 Incorrect Permission Assignment for Critical Resource |
[24] CWE-327 Use of a Broken or Risky Cryptographic Algorithm |

Nalelée CWE - 2010 CWE/SANS Top 25 Most Dangerous Software Errors

@v @ C(f " http://cwe.mitre.org /top25 /index.html {EV\\ (-"' Google Q\
2 CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')
Summary
| Weakness Prevalence | High | Consequences | Data loss, Security bypass 0
| Remediation Cost | Low | Ease of Detection | Easy
|Attack Frequency | Often |Attacker Awareness | High
Discussion

These days, it seems as if software is all about the data: getting it into the database, pulling it
from the database, massaging it into information, and sending it elsewhere for fun and profit. If
attackers can influence the SQL that you use to communicate with your database, then
suddenly all your fun and profit belongs to them. If you use SQL queries in security controls
such as authentication, attackers could alter the logic of those queries to bypass security. They
could modify the queries to steal, corrupt, or otherwise change your underlying data. They'll

even steal data one byte at a time if they have to, and they have the patience and know-how
to do so.

Technical Details | Code Examples | Detection Methods | References

Prevention and Mitigations
Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs
that make this weakness easier to avoid.

For example, consider using persistence layers such as Hibernate or Enterprise Java Beans, which can
provide significant protection against SQL injection if used properly.

Architecture and Design

If available, use structured mechanisms that automatically enforce the separation between data and
code. These mechanisms may be able to provide the relevant quoting, encoding, and validation
automatically, instead of relying on the developer to provide this capability at every point where output
is generated.

Process SQL queries using prepared statements, parameterized queries, or stored procedures. These -
features should accept parameters or variables and support strong typing. Do not dynamically construct :

and avacisbs Anace cbtrinoe aaithin fthaco faastairac 1icina

Nawvar” Aar cirmilar fanctinmnalite cimecas semis rrsse b §
http:/ /capec.mitre.org/data/definitions/247.html

Monster Mitigations

These mitigations will be effective in eliminating or reducing the severity of the Top 25. These mitigations will alse address many weaknesses that are not even on the Top 25. If
you adopt these mitigations, you are well on your way to making more secure software.

A Monster Mitigation Matrix is also available to show how these mitigations apply to weaknesses in the Top 25.

D Description
M1 . Establish and maintain control over all of your inputs,
M2 |Establish and maintain control over all of your outputs.
M3 |Lock down your environment.
M4 |Assume that external components can be subverted, and your code can be read by anyone.
M5 |Use industry-accepted security features instead of inventing your own.
|GP1 |(general) Use libraries and frameworks that make it easier to avoid introducing weaknesses.
IGP2 _|(general) Integrate security into the entire software development lifecycle.
[e]x] (general) Use a broad mix of methods to comprebensively find and prevent weaknesses.
IE_;H fI{g_l_:nera_l} Allow locked-down clients to interact with your software,

CWE

CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-78: Improper Sanitization of Special Elements used in an 0S5 Command ("0S Command Injection')

CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CWE-89: Improper Sanitization of Special Elements used in an SQL Command ("SQL Injection’)

CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ("PHP File Inclusion')

ICWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow’)

CWE-129: Improper Validation of Array Index

CWE-131: Incorrect Calculation of Buffer Size

CWE-190: Integer Overflow or Wraparound

CWE-209: Information Exposure Through an Error Message

CWE-285: Improper Access Control (Authorization)

CWE-306: Missing Authentication for Critical Function

| S | W— | —

CWE-311: Missing Encryption of Sensitive Data

ky Cryptographic Algorithm

— —

|CWE-352: Cross-Site Request Forgery (CSRF)_

|CWE-362: Race Condition

oo Mo |

[CWE-434: Unrestricted Upload of File with Dangerous Type

S — —

|

[CWE-494: Download of Code Without Integrity Check

|CWE-601: URL Redirection to Untrusted Site (‘Open Redirect)

[Mod ||CWE-732: Incorrect Permission Assignment for Critical Resource

|CcWE-754: Improper Check for Unusual or Exceptional Conditions

;

|CWE-770: Allocation of Resources Without Limits or Throttling

[High [Mod |[CWE-798: Use of Hard-coded Credentials

||CWE-805: Buffer Access with Incorrect Length Value

eliance on Untrusted Inputs in a Security Decision

Focus Profiles

The prioritization of items in the general Top 25 list is just that - general. The rankings, and even the selection of which items should be included, can vary widely depending
on context. [deally, each organization can decide how to rank weaknesses based on its own criteria, instead of relying on a single general-purpose list.

A separate document provides several "focus profiles” with their own criteria for selection and ranking, which may be more useful than the general list.

| Name [Description

On the Cusp: : From the original nominee list of 41 submitted CWE entries, the Top 25 was selected. This "On the Cusp” profile includes the remaining 16

W! ke the 2010 Top 25 weaknesses that did not make it into the final Top 25.

Educational Etphas This profile ranks weaknesses that are important from an educational perspective within a school or university context. It focuses on the CWE
entries that graduating students should know, including historically important weaknesses,

Weaknesses by Lanayae This profile specifies which weaknesses appear in which programming languages. Notice that most weaknesses are actually language-
independent, although they may be more prevalent in one language or another.

Weaknesses Typically

Fixed in Design or This profile lists weaknesses that are typically fixed in design or implementation.

Atomated ve. Mangs This profile highlights which weaknesses can be detected using automated versus manual analysis. Currently, there is very little public,

b authoritative infarmation about the efficacy of these methods and their utility. There are many competing opinions, even ameng experts. As a

Aoty result, these ratings should only be treated as guidelines, not rules,

W i : This profile specifies which weaknesses appear in which programming languages. Notice that most weaknesses are actually language-
|independent, although they may be more prevalent in one language or another.

EQLD—?EJQM—“’M This profile is for developers who have already established security in their practice. It uses votes from the major developers who contributed to

Wﬁ rity Prack the Top 25.

Ranked by Importance - (This profile ranks weaknesses based primarily on their importance, as determined from the base voting data that was used to create the general

for Software Customers |list. Prevalence is included in the scores, but it has much less weighting than importance.

meﬂl ITI This profile lists weaknesses based on their technical impact, i.e., what an attacker can accomplish by exploiting each weakness,

Background Detalils to Check Out

o cwe.mitre.org/top25
e Process description

o Changelog for each revision

e On the Cusp — weaknesses that almost
made It
o Appendices

— Selection Criteria and Supporting Fields

-~ Threat Model for the Skilled, Determined
Attacker

©2011 MITRE

On the Cusp: Other Weaknesses to Consider

Table of Contents

1. Introduction
2. Weaknesses that did not have sufficient prevalence or severity
3. Weaknesses covered by more general entries

Introduction

The CWE/SANS Top 25 is really just a starting point for developers. Many weaknesses were
considered for inclusion on the Top 25, but some did not make it to the final list. Some were not
considered to be severe enough; others were not considered to be prevalent enough.
Sometimes, the Top 25 reviewers themselves had mixed opinions on whether a weakness should
be added to the list or not.

With respect to severity, some Top 25 users may have a significantly different threat model. For
example, software uptime may be critical to consumers who operate in critical infrastructure or
e-commerce environments. However, in the threat model being used by the Top 25, availability
is regarded as slightly less important than integrity and confidentiality.

With respect to prevalence, some Top 25 items may not be applicable to the class of software
being developed. For example, cross-site scripting is specific to the Web, although analogs exist
in other technologies. In other cases, developers may have already eliminated much of the Top
25 in past efforts, so they want to look for other weaknesses that may still be present in their
software.

Some on-the-cusp items were omitted because they are already indirectly covered on the Top
25, usually by a more general entry. However, these would be important to consider as
individual items.

For these reasons, users of the Top 25 should seriously consider including these weaknesses in
their analyses.

Weaknesses that did not have sufficient prevalence or severity

|r261 [136

|CWE-749: Exposed Dangerous Method or Function

[.fust 2 points from the Top 25,.. possibly on the rijs-e.
[27] _|129 CWE-307: Improper Restriction of Excessive Authentication Attempts
Pozsibly squeezed off the Top 25 by cousins such as missing authentication.
[28] [125 |CWE-212: Improper Cross-boundary Remaval of Sensitive Data
[Impurt.unt when privacy is 8 main concern.
[29] [124 |CWE-330: Use of Insufficiently Random Values
Not always security-relevant, but still dangerous if it is.,
[30] |12I‘.] CWE-59: Improper Link Resolution Before File Access ('Link Following)
|A burst in CVE statistics in 2008 shows that these can still be prevalent if focused attention is paid to them.
Eﬂ 120 |CWE-134: Uncontrolled Format String
: ' Usually easily findable, and code execution possibifities have been reduced due to compifer changes, e.g. remaval of support for "%n” sequences.
[32] 119 |CWE-476: NULL Pointer Dereference
Typically cause a denial of service in C/C++ but, for certain Linux kernels and possibly other environments, exploitable for code execution,
E:ﬂ 119 |CWE-681: Incorrect Conversion between Numeric Types
[Har be on the rise in future years, especially in transitions from 32-bit to 64-bit architectures.
[34] [118 [CWE-426: Untrusted Search Path
Prevalence fs uncertain.
[35] |115 CWE-454: External Initialization of Trusted Variables or Data Stores
High prevalence in PHP environments with register_globals enabled, or by programmers who are not familiar with the effectiveness of reverse engineering, or the many ways that
inputs can be modified.
[[36] |114 [CWE-416: Use After Free
|Likely on the rise in future years.
E.:,z} 114 |CWE-772: Missing Release of Resource after Effective Lifetime k
Important when prevention of denfal of service is critical,
[38] |1Dﬁ ICWE-799: Improper Control of Interaction Frequency
[Impwtanr when prevention of denial of service iz critical. Also a critical component of brule force attacks against security features.
[39] [100 |CWE-456: Missing Initialization
Not always securily-relevant; also, easily findable and fixable with modern compilers and code scanners,
[40] |91 CWE-672: Operation on a Resource after Expiration or Release
Sometimes catchable by the compiler, but may Increase in future years.
[41] [77__ |CWE-804: Guessable CAPTCHA
|Not very prevalent since the use of CAPTCHA is not very prevalent, and importance is generally less than that of other security features such as encryption and authentication.

Frequently Asked Questions (FAQ)

How is this different from the OWASP Top Ten?
The short answer is that the OWASP Top Ten covers more general concepts and is focused on web applications.
The CWE Top 25 covers a broader range of issues than what arise from the web-centric view of the OWASP
Top Ten, such as buffer overflows. Also, one goal of the CWE Top 25 is to be at a level that is directly
actionable to programmers, so it contains more detailed issues than the categories being used in the Top Ten.
There is some overlap, howewver, since web applications are so prevalent, and some issues in the Top Ten hawve
general applications to all classes of software.

How are the weaknesses prioritized on the list?
With the exception of Input YValidation being listed as number 1 (partially for educational purposes}, there is no
concrete prioritization. Prioritization differs widely depending on the audience (e.9. web application developers
viersus 05 developers) and the risk tolerance (whether code execution, data theft, or denial of service are more
important}. It was also believed that the use of categories would help the organization of the document, and
prioritization would impose a different ordering.

Why are you including overlapping concepts like input validation and XSS, or
incorrect calculation and buffer overflows? Why do you have mixed levels of

abstraction?
VWhile it would have been ideal to have a fixed level of abstraction and no overlap between weaknesses, there
are several reasons Wwhy this was not achieved.

Contributors sometimes suggested different CWE identifiers that were closely related. In some cases, this
difference was addressed by using a more abstract CWE identifier that covered the relevant cases.

In other situations, there was strong advocacy for including lower-level issues such as 5QL injection and cross-
site scripting, so these were added. The general trend, however, was to use more abstract weakness types.

While it might be desired to minimize overlap in the Top 25, many vulnerabilities actually deal with the
interaction of 2 or more weaknesses, For example, external control of user state data (CWE-642) could be an
important weakness that enables cross-site scripting (CWE-79) and S50QL injection (CWE-89). To eliminate
overlap in the Top 25 would lose some of this important subtlety.

Finally, it was a conscious decision that if there was enough prevalence and severity, design-related
weaknesses would be included. These are often thought of as being more abstract than weaknesses that arise
during implementation.

The Top 25 list tries to strike a delicate balance between usability and relevance, and we believe that it does
50, even with this apparent imperfection.

Why don’'t you use hard statistics to back up your claims?
The appropriate statistics simply aren't publicly available. The publicly available statistics are either too high-
level or not comprehensive enough. And none of them are comprehensive across all software types and
environmaents.

People are Starved for Simplicity

GOUSI@ Analytics ramartin@mitre.org| Settings [My Account| Help|Sign Out

Analytics Settings | View Reports: My Analytics Accounts: TXIUYT

o February 3, 2010 - March §, 2010 =0= December 30, 2008 - January 29, 2009

80,000 80,000

0,000 40,000

Fab § F 1; \ ﬁ.‘. Mar
ap [i, [l . 1ar
/ M

\&ﬁ-‘:‘ ﬁ !ﬂ# P e |

© 2011 MITRE

5 s s e o s g

Top25 | AppSec Street Fighter — SANS Institute

I8 http://blogs.sans.org/appsecstreetfighter/category/top25/

=
By (-"]* Google Q-‘:‘

Top 25 Series — Summary and Links

Posted by Frank Kim on April 6, 2010 - 3:4] pm
Filed under Top25

As requested here are the links to all the posts on the Top 25 Most Dangerous Programming Errors. Please let us know if you

have any suggestions or comments.

| — Cross-Site Scripting (XSS

2 — SOL Injection

3 — Classic Buffer Overflow

4 — Cross-Site Request Forgery (CSRF)

5 — Improper Access Control (Authorization)

6 — Reliance on Untrusted Inputs in a Security Decision
7 — Path Traversal

8 — Unrestricted Upload of Dangerous File Type
9 — OS5 Command Injection

|0 — Missing Encryption of Sensitive Data

| | — Hardcoded Credentials

12 — Buffer Access with Incorrect Length Value
|13 — PHP File Inclusion

|4 — Improper Validation of Array Index

15 = Improper Check for Unusual or Exceptional Conditions

|6 — Information Exposure Through an Error Message
|7 — Integer Overflow Or Wraparound

|8 — Incorrect Calculation of Buffer Size

|19 — Missing Authentication for Critical Function

20 — Download of Code Without Integrity Check

2| — Incorrect Permission Assignment for Critical Response
22 — Allocation of Resources Without Limits or Throttling

23 — Open Redirect
24 — Use of a Broken or Risky Cryptographic Algorithm

25 — Race Conditions

i T e L S R e 3
Pl Ui JUITTE TTITOUgITLS ADUUL

a Passwords

Jim on Seven Security
(Mis)Configurations in Java
web.xml Files

Nick Owen on Some Thoughts
About Passwords

ARCHIVES
| Select Month E3)

META
Log in
Entries RSS
Comments RSS

WordPress.org

INITIATIVE

2010
December 10-17
Washington DC

More than 20
Courses to
Empower your

£

Dgfnﬂ; es .

—* 4|k

‘Welcome to MSDN Blogs Sign in | Join | Help

I S
-

Sl e

RSS 2.0 ATOM 1.0

Recenk Posta SDL and the CWE/SANS Top 25

SDL Threat Modeling Teol 3.1.4
ships!
Early Days of the SDL, Part Four Bryan here. The security community has been buzzing since SANS and MITRE’s

Early Days of the SDL, Part joint announcement earlier this month of their list of the Top 25 Most Dangerous

Three Programming Errors. Now, | don't want to get into a debate in this blog about

Early Days of the SDL, Part Two Whether this new list will become the new de facto standard for analyzing

Early Days of the SDL, Part one SECUrity vulnerabilities {or indeed, whether it already has become the new
standard). Instead, I'd like to present an overview of how the Microsoft SDL maps

Tags to the CWE/SANS list, just| cwe Title

Education? Manual Process? Tools? Threat Model?

Common Criteria Crawl Wallk Improper Encoding or Escaping of Output ¥ Y

Run eri SDL soLp
Py . coverage of the Top 25 an 79 Failure to Preserve Web Page Structure (aka Cross-Site Scripting) Y ¥
Metwork Security Assurance believe that the results te
Security Blackhat SDL threat 25 were developed inde 319 Cleartext Transmission of Sensitive Information Y
meodelin e W 362 Race Condition
. AnalysiE Wil e papar ani —

Newes guidance around every m| 199 Failure to Constrain Memory Operations within the Bounds of a Memory Buffer Y

made many of the same

for you to download and { 73 External Control of File Name or Path Y ¥
About Us .

Below is a summary of hg 94 Failure to Control Generation of Code (aka 'Code Injection'} Y Y
Adam Shestack see the SDL covers every
Bryan Sullivan them (race conditions and 404 Improper Resource Shutdown or Release Y Y
David Ladd i i

by multiple SDL recquirem 682 Incorrect Calculation Y Y
Jeremy Dallman tools to prevent or detect
Michael Howard 2 327 Use of aBroken or Risky Cryptographic Algorithm Y Y Y
Steve Lipner CWE Title

732 Insecure Permission Assignment for Critical Resource Y Y
Blogroll 20 Improper Input V
116 Improper Encodir] 250 Execution with Unnecessary Privileges Y Y Y

BlueHat Security Briefings Escaping of Outp

CWE Outreach: A Team Sport

May/June Issue of IEEE

T've already couched on this
cral fmes here, b review all
aussions and AULS on all obj)
yous create in the file witem
voniggumation sores such as
Windows registry, In the cas
Windows Vit and later. o
change any default &
system or regscry unless you
temd tr weiken the ACL

bt tlac]

CWE-330:

Use of Insufficiently]
Random Values
ldentfe all the random o]
senerators. in voar code and d
nnne which, if any, genessie i
passwords. arsome otherseeret
ke sure e cude geovmting]
Jom b ooy oz
by mzmdom amd nest 3 detern)
i kil penertor
the L romome rand() funcy
Using fimsions like eand (
Firie, o ot e crypiope pliy

CWE-250: Execution
with Unnecessary
Privileges

Idertify all proccsses thar ru
part of your sclutien and de
mmine wha privabeges thew rey|
o operate correctly. I 2 prof
runs 3¢ rooc (on Linuy, Uiy
M O8 X)) or sysecm {Winlo
ak yourself, "W Somet|
the answer i otalle valil T
the ¢ode must erform a
leged wperation, bat somen)
you don't know why 11 runs
way other than. hat’s the
ity ahwaws wnl™ 1 the code
need 10 opetate a high proval
keep the time span within w]
the cade is high privileye s o
a4 possble—far example, of
g a pore below 1024 1 a Ly
application requires the codd
be run as voot, bt afeer that,

Basic Training

mtermatonalizy

portant that def

file arah path o
form before us
oess 1 file or p:

or mm.lm.. Al
wiew, baok for

g aceeses il

o
o valid dara, H
and “Eriown g
cellent way to

CWE-426:
Untrusted|
Old versions

warched the

rent directory
filenames, whi
problems i the
had @ weak p
fully, weak o
aren’ oWy |
na piarantes
tiom wor't b
swarches or veal
ton from & pf
wrised s

environment
remedy s o
path, buc this |

tems—for e
Vista, thie c:\ Y

erating systen
correct path o

(XA5E O
that makes CWE-116 warse, In
the past, we cook XS5 bugs light-
Iy, bt vow we e wonns that can
exploit XSS vul

vial networks s

i the real hug

erbilities i

s MySpace
example, the Sy worm). Alsn,
research into Web-related volner-
ihilitees has progressed substan-
by over the past few years. with
new ways go ateck osten repn-
! cd. For pure XS5 bs-
ed by CWE-T9, the

st validae all in-

ays been
prob
ably contimue o be o for the fore-
de future.

it approach and

Develispers ean also

add a layer of de

autpt e
put fsee

CWE-78: Failure
to Preserve 0S
Command Structure

Many applications, particularly

server applications, reerive -
trosted requests and wse the daa
in them o interer wich the wn-
derbying. aperating. system. Un-

fiserunately, chis con lead 1o severe

server compromise if the incoming
dat isn't amalbyzed—ag:;

difense is v check the dak, ﬁho‘

applicaricon with law prn'll
help conain the danegs

CWE-319: Cleartext
Transmission of
Seansilive Informatian
Sensitive datn mose obvioady be
proweeed st rest and while on
the wire. The bea solution w
this vulnerhilivy 35 to use 2 well-
rested technology seh a5 SSL/
TLS or ISce, Do’ [ever!
yeur own conmuication method
and eryprographic defense, This
wieakness 13- related o CWE-327
(" Usee of a Broken or Risky Cryp-
wprphic Algorithim'), w ke
sure you aren’t using weak 4(0-hit

cate

CWE-352: Cross-Site
Reguest Forgery
Crose-site request forgery (abo
knowwn e CSRF) yvolserabilithes
are a relatively new fomn of Web
weakness cansed, in parg, by a bad
Wb apphcation designe In short,
this desipn doein’ verify chara re
quest canwe from valid vser code
and 1 irstesd a

i maliciondy
on the wer’s thH e

the best defense is o e 2 unigue

rally,

and unpredictat

user Tradisional

doewi't mitigate th
eaise the input b

CWE-362:
Race Condition

Race conditions are timing prob-
lemss thar e i
b
phcation wes o filename o veri-
Fy that a file cxasts and then wses
e

ot wnespor
ioe—ior example, an

sme Alename 10 open ‘that
file: The problen is in the amll
tme d
and the file open, wh

berween the check

k-

ers can use to change the file ar
delece or creas at. The safest way
file syscem race con-
dittons 15 to open the object and
then use the resulting handle for

1o mitig

Further operations. Als,
ader reducing o
abjects—fir examph
files should be ocal o the wer
and not shared with multiple wser

seconnits. Cirrect e of sy

tenpTary

nization primitives (mutes

senaglion

o ermieal sections) is

similarly 1

peane

CWE-209:

Error Message
Information Leak

Errar info) cal to de-
buggging failed aperation
st wndepstand who can read
thar dita. In general, you shoold
resarict decatled error s
trusted wsers. Hemoe and anon-
vinous wiers shonld s gonenc

tation

bt you

[0

messgs with the dewiled data

CWE-119:

Failure to Constrain
Memory Operati
The dresded buffer
C and Crt
er vulnerabala
T —

Mo

runs, The bese way to ror
problem 10 move awoy|
ind O+ where v mak)
and wse higher-level 14
such as Buby, C#, and o
cause they don't offer diref
tomernory, ForCand C+
eanans, developers should

*known bad " functions sl

C runitime (for example,
STEEaT, STEACPY, &
sprint. and gets) and o
secure. versons. Visul €
many weak AP
and you shes
comipiles Ala,
lysis can el
remisl buffer overruns)
gem-level

reis space lay
domization and no exec

it cormpl
strive [
i tew]

Satc

operatis

such a5 a

can help reduee the dhan

Security & Privacy.

Basic Training
Eciiors: Richand Ford, dond e fledu
MEchan Howard, mikehow microsofl.com

Improving Software Security
by Eliminating the CWE
Top 25 Vulnerabilities

0 January 2009, MITRE and SANS issued the “2009 | encoding Web-based outputis 3 de-
CWE/SANS Top 25 Most Dangerows Program- | detect snd prevent malicions Web
ming Errors” to help make developers more aware | 200 However, the industry hias wen
af the bugs that can cause secunty comprormses | been pmrmu! If[hl. developer had

{hetpifeweamicre ong/top23), 1 was one of the many people|

buffer overrun u exploitay

CWE-642:
External Control
of Critical State [
Unpratected state info
such as profile dao or oo
tormiatzon, s subject to a
it's iniportane g protect |
by g the approprian
conerol lists (ACLs| or pord
tor prewsiscens dbata sl sor
of eryprographic defemse:
ahed mes auther
cade (HNA o
data. You can use an HM
persistent daes i well.

CWE-73:

External Control
of Filename or P4
Agtackers moght be able
artntrary file dam af they

el ddiga that's used a5 part

CWE-94: | RC3 or dured-key [PSec. logged to an audis log, or pach e, s criticd
Failure 1o

Generatiol e o

To's: comman to see - code Ejecs . Furz testing s also effeerive

ton valserabalites o fvaSesipt | ae detecting CWE-663,

ende thac builds o s Iyisami=

cally and puses 1t evali) w | CWE-G82: o sceret dacy - the code.

svecite. IF the amacker controle | dncorrect Calculation | veu should slse srore this data i 68

the source string 0y way, he or

she can create-a malicions paybaad.

The simplest w3y to eradicate this

Jand of bug i oo eradic b wse

of evalil. bit that conld mean
| redesigning the application.

IREE SEQUINTY & PRNAGY

Many baffer overnun in © aned
Ut code today are actoally refat-

ainns. I an awacker con-
ol one or men: of the cleme
an 3 size caleulation; he ar she can

from industry, government, and
acadenia who provided foput w0
the docurent,

CWE, which stands for Com-
man Weknew Enumeraion, is 3
progeet spossored by the Mational
Cyber Secarity Division of the US
Department of Homeand Secunity
10 clasufy seeurity bugs. It assigns a
umique ramber o weaknes opes
such as bufler pverrums of crosesite
seripring bugs (for example. CWE-
327 i "Use of 3 Broken or Risky
Crypeographic Algenthni™), Short-
Iy after the Top 25 lics releace,
Microsolt unveiled a docuinent en-
ntled, “The Microsoft SUL and the
CWESANS Top 25, to explain
how Micrmolt's security processe
can hely prevent the worst offend-
e (hopeblogs msdn.com Adl
agehived 2009411727/ sdb-and-the
-ewe-gan-top-28.08p),

Full dischonure: Ty one of chat
docurnent’s coauthers, but my pus-
pose here isn't to regunitibe the
Microsofi picce. Racher, my paal n
10 describe somee best practioes that
wann help you eliminawe de CWE
Top 23 vulnerabalities in your ewn
development environmem and
procuces. I ale importet to un-
densand that addresang e weak-

COPUBLISHED B THE EEF CONPUTER AND RELIABLITY S0 Ti]

| femse in case the develaper daeun't
input s CWE9 amd CWE-

many secrity b that could hae

* DEALING WITH THE SMART GR

nesses i the st doesn't imply yous

suftware & seonre o all o o
atcack, there are plency mon vul
nerabiliry types 1o worrs sbout!
CWE-20: Improper

Input Validation
The vae mority of serious «-
cunity vulnerabilities are arput-|
vabdation wswes butfer evernanm,
SO injection. and cros-sit
senpting bugs come immedian
w0 . Devebapers siply truv

NG DepeNDABILITY, RELIABILITY, AND TRUST

the input for validity. | eant itres
this eneugh—if developers smpl
learned o pever wrme o
daa (in rerms of format, coneerie|
amd aze), many servos bugs would
o away. The care losson here i fo
developers to carctully vatidae in
put and for designers to understa
b they o buikd dheie systoms t
proteet input uch thar only trusned
wwers can manipukae the dita,

CWE-116:
'fnpms

\’uu coul
really isn't

Basic Training

a sevare location within che o
Erating Tys
protect it wi
cHErYE
the encryption key with o appro-

| priate peraission

miwion it andl prote

68 Improving Software Security by
Eliminating the CWE Top 25 Vulnerabilities
Micuart Howaro

The Top 25 Is not

o A silver bullet
o A guarantee of software hea

o A perfect match for your unic
e As simple as it seems

th
ue needs

e The only thing to include in contract

language
o Completely found by tools

©2011 MITRE

The Top 25 Is...

o A mechanism for awareness
o A trigger of questions

o A place for mitigations

o A conversation starter

o A first step on the long road to software
assurance

©2011 MITRE

CWE Top 25 2011

o Starting this week

o Utllizing the Common Weakness Scoring
System (CWSS 0.2) as under-pinning

o Will have numerous “Top 25’s”
— Including one for Web Applications

o Final "master” Top 25 list, will leverage
combined score from multiple vignettes.

o No fixed date for release of the 2011 Top
25 at this point, may take 2 to 3 months.

©2011 MITRE

Common Weakness Scoring System (CWSS)

Archetypes: Vignettes:

 Web Browser User Interface 1. Web-based Retail Provider
 Web Servers 2. Intranet resident health records
» Application Servers management system of

« Database Systems hospital

o Desktop Systems

e SSL

* Internet

« DMZ

e Intranet

Web
Browser F\

Web
Browser

Web
Browser

INTERNET / = 1 2
1 Router Web Application Database
Servers Servers Systems
DMZ | ™ ™
—— 111 111 111 INTRANET
. | 1 | | | |
: Web Desktop Desktop Desktop Desktop
Application Servers Systems Systems Systems Systems
Servers Web Web Web Web
Browser Browser Browser Browser

ghartin@ mitre.org

